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Abstract—Phasor Measurement units (PMU's) are becoming 

standard equipment in electrical grids around the world.  They 

are capable of generating a significant amount of data on a 

continuous basis from distribution and transmission networks. 

Several months of data from 2 PMU’s situated on a distribution 

network were captured in raw format.  This data was separated 

by measurement type and compressed using a number of 

standard compression algorithms.   The results show the 

compressibility of PMU data for these algorithms and are used 

to estimate the space requirements for storing a day of data 

from a single PMU.   

Index Terms--PMU, compression, szip, synchrophasors. 

I. INTRODUCTION 

In recent years there has been a significant increase in the 
number and availability of Phasor Measurement Units(PMUs)  
for power system measurements. Applications include 
enhanced state estimation, wide area monitoring, and stability 
assessments; and numerous other uses are being researched. 
PMUs are synchronized using a GPS clock and capable of 
providing measurement updates at up to 60 Hz.   The units can 
be connected via ethernet and the data is transmitted using the 
C37.118 standard [1].  Data packets commonly include: a 
timestamp, frequency, frequency rate of change, 3 phase 
voltages and 3 phase currents.  The voltage and current data 
can be represented by real and imaginary components or as a 
magnitude and phase.  Additional digital or analog channels 
can be defined depending on the measurement system.   

The North American SynchroPhasor Initiative (NASPI), a 
consortium of various government, industrial, and academic 
institutions, has sought to improve power system reliability 
through the use of wide area measurement systems [2].  As an 
organization, they are promoting increased use of PMU 
technology in the North American power grids.  At present, 
there are hundreds of the devices in operation across the 
country and within a decade there is potential for this number 
to increase to several thousands.  While the data management 
issues for this amount of PMU data are within the realm of 
current technology, managing it effectively will require 
significant thought and effort.  This is particularly true when 
conceiving of long term storage and accessibility.   

In typical practice, PMU data is stored in a database such 
as OSIsoft PI or another structured database such as Oracle or 
MySQL.   Projects such as  OpenPDC can also store data to 
various other file formats  [3].  Typically, these formats store 
the data as binary values and can become very large quickly.  
PI has an optional compression algorithm that can be very 
effective at reducing the size of the data but it is a lossy 
compression that may be unsuitable depending on the 
technical and legal requirements for the data.  In many cases, 
therefore, it is desirable to be able to archive the data in a 
lossless fashion.   

In order to reduce expense and efficiently utilize available 
storage resources, the data must be compressed.  Various lossy 
compression algorithms have been proposed for PMU and 
power system data.   These make use of various compression 
techniques such as principle component analysis [4], and 
wavelets [5].  The applicability of these algorithms depends on 
the application and what characteristics of signal degradation 
are acceptable.  Since future applications are unknown, a 
lossless compression might be better suited for data archival.  
Some research on the topic of lossless compression of PMU 
data [6] has been done. However, a more detailed exploration 
using a large quantity of real PMU data is required for 
gauging the potential impact of compression on storage for 
PMU data and as a benchmark for any specialized techniques.  

II. COMPRESSION ALGORITHMS 

This study compares a set of compression algorithms and 
their performance on the various types of PMU data.  The 
programs tested use freely available software to perform the 
compression.  Five compression formats were tested: gzip, 
bzip2, 7-zip,  szip, and szip using an optional flag that encodes 
the incremental values instead of the original data.  These 
represent distinct compression methodologies and are 
available in easy-to-use software.   

Gzip is the oldest algorithm and is based on the Lempel-
Ziv 77 algorithm [7].  It creates a dictionary of common 
values  and it can store the values or patterns based on the 
dictionary to reduce the size.  The bzip2 compressor  uses the 
Burrows-Wheeler algorithm [8].  The 7-zip algorithm utilizes 
the Lempel-Ziv-Markov algorithm designed for that 
program[9].  Finally, the szip algorithm is targeted at scientific 
data and uses the extended-rice algorithm for data 
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compression [10].  It has been used for earth science data with 
good results [11].   

III. DATA COLLECTION 

Two Arbiter 1133a PMU units were set up to collect data 
from a 3-phase 120 V distribution circuit.  The arbiter units 
were set up to collect voltage and frequency data at 60 Hz 
using the IEEE C37.118 protocol.  The data was collected 
using a LabView application and stored as individual 
messages in pcap format.  Each pcap file typically consisted of 
a single day of data.  The data used in this research comprised 
of a generally continuous data set from July 20, 2012 to 
November 18, 2012 and in total comprised over 59 GB in the 
raw pcap format.  The distribution circuits monitored are 
connected to the US Western Interconnect. 

The circuit itself is in an office/lab building and contains a 
number of different loads, including computers, lighting, 
machinery and various motor loads for air conditioning and 
pumping.  The voltage signal can range from very noisy with a 
lot of loads switching on and off to quiescent and very stable.  
Fig. 1 shows some samples of typical voltage patterns. 

 
The voltage data is represented in the C37.118 packet as 

32-bit floating point numbers in real and imaginary 

components.  The frequency is also recorded as a 32-bit 

floating point number.  The Arbiter 1133a uses a 16-bit 

sampler and collects 1,024 samples per measurement giving it 

a resolution limit of 26 bits on the voltage data. The data 

limits are set to record data between ±150 V with a resulting 

precision of approximately 4.47µV.  Filtering inside the 

device should produce a slightly lower quantization level in 

the floating point data.    For the frequency data the resolution 

is specified as 7 decimal digits of precision, in the data this 

encoded with a quantization level of 3.81 µHz in the floating 

point number which is comparable to approximately 24 bits 

of resolution.   
 

IV. METHODOLOGY 

For each component a separate binary file was created 
from data extracted from the pcap files.  These files 
represented the frequency along with each of the 3-phase real 
and imaginary voltages. Additionally, the real and imaginary 
components were transformed to magnitude and phase 
components and stored as separate files.  Four additional files 
were also created by merging the 3 separate voltage phases 
into a single data file, in either row-major or column-major 
format.  Finally, all the data was converted to int32 values 
from the single precision floating point values and saved to 
separate files.  The conversion process captures the same 
precision as the floating point representation as indicated from 
the device specification.  The purpose of the conversion was 
to test the idea that integer based numbers are easier to 
compress than floating point data. 

  The compression testing was done using command line 
programs from 7-zip namely 7za.exe for the 7-zip, bzip2 and 
gzip formats and szip.exe for the szip compression methods.  
All compression was performed on a Windows 7 computer.  
To ensure a fair test, all files converted using 7za were 
converted using the “-mx9” flag which specifies maximum 
compression.  For the szip program, two sets of options were 
used. The first, “-r4”, specifies that the dominant unit size in 
the file is 4 bytes.  The second, “-r4i”, indicates that the 
compressor should compress the increment values between 
successive units instead of the original value.   

A typical file consisted of around 5.18 million records, and 
the raw binary files were typically 20 MB in size.  Both the 
integer based and the floating point files were identical in size. 
A number of partial files were also included in the test which 
were created as a result of computer reboots, or network 
glitches.   

V. RESULTS 

Fig. 2 through Fig. 5 represents the results from the five 
compression methodologies for each of the corresponding data 
types: frequency, Voltage, voltage magnitude, and voltage 
phase.  The box in the plots represents the 25

th
 to 75

th
 

percentile.  The dashed error bars represent 3 times the range 
of the 25

th
 to 50

th
 and 50

th
 to 75

th
 above and below the median 

line respectively.  Any outliers are highlighted as points on the 
chart.  The aggregate results are summarized in Table 1.  

Table 1 Summary results for floating point compression 

 7z gz bz2 sz sz -i 

V 1.57 1.15 1.09 1.90 2.18 

Vmag 2.33 1.86 2.33 2.64 2.77 

Vphase 1.64 1.15 1.07 2.00 2.39 

freq 2.95 2.33 3.01 3.27 3.38 

  

 

Figure 1 Typical Voltage signals 

 



 

 

 

 

A. Integer vs. Floating Point Compression 

Common conception is that integer data will compress 
more easily than floating point data.  In this case, that proved 
to be generally untrue. The actual results depended on the data 
type and the compression algorithm.  Table 2 shows the 
relative comparison of the floating point vs. integer 
compression.   

Table 2 Integer vs. floating point compression results 

 7z gz bz2 sz sz -i 

V 1.5% -0.5% 2.1% 2.6% 1.4% 

Vmag -1.8% -2.7% -3.7% -2.2% -6.5% 

Vphase 0.4% -0.3% 1.2% 1.5% -0.6% 

freq 16.2% 13.0% 15.5% 12.8% 11.4% 

 

These results indicate slight improvement for real and 
imaginary voltage components, slightly worse results for 
voltage magnitude compression, and mixed results for the 
voltage phase information.  For frequency, the conversion to 
integers may involve the truncation of precision that is present 
in the floating point values that is not specified in the result.  
In the case of frequency, 7 digits of decimal precision were 
kept.  Translating to integer based representations may have 
removed some unspecified precision from the results, thereby 
improving the compression when operating on an integer 
basis.   

B. Clumped Results 

The binary data from the 3 different voltage phases and 
magnitudes was also clustered into a single file.  The file was 
written in two ways with the individual data sets stacked one 
after another in the file.  As might be expected, the stacked 
method produced identical compression results as 
compressing the data sets independently.  The other method of 
interleaving the data sets actually reduced the compression 
ratios by 10 to 15%.  This result indicates no advantage to 

 

Figure 4 Compression ratios of Voltage Phase 

 

 

Figure 5 Compression ratios of frequency data 

 

 

Figure 3 Compression ratios of Voltage magnitude 

 

 

Figure 2 Compression ratios of real and imaginary voltage 
components 

 



merging the 3 phases together for either phase or magnitude 
data.    

VI. DISCUSSION 

The szip algorithm was the best performing algorithm on 
PMU data.  In all the data sets in question, it outperformed the 
7-zip algorithm. Using szip with the incremental flag further 
improved the compression performance with final 
compression ratios of 2.77 for the voltage magnitude data and 
2.39 for the phase data.  Compression performance for the 
frequency data was higher than for the voltage data with a 
ratio of 3.38.   

The general order of performance put gzip as the lowest 
performing of the algorithms tested, then bzip2, followed by 
7-zip with szip performing the best.  On the real and 
imaginary voltage data, gzip slightly outperformed bzip2, 
though both performed poorly in compression results.  These 
results are generally comparable to the results reported in [6] 
when examining their unprocessed results.  The results 
achieved in this study indicate slightly higher compression 
ratios, perhaps due to the use of the maximum compression 
flags in the file creation.  The szip algorithm is one of the 
compression algorithms that can be used with the HDF5 file 
format, a common data format for sharing of large scientific 
data sets.  Follow on work might be warranted in examining 
the applicability of utilizing an HDF5 file format for the 
storage and transfer of PMU data sets for use in the broader 
scientific community.   

Converting the voltage data to integers, while maintaining 
the same precision, does not change the compression ratios 
significantly.  For voltage magnitude data this process reduces 
the compression ratios by around 2%.  Converting to integer 
based data may have some advantage for frequency data.  
However, a significant fraction of these gains may be coming 
from a reduction in apparent precision. The conversion to 
integer was done using the specifications of the measurement 
system and not the actual precision found in the raw data. It is, 
therefore, debatable whether this process can be considered a 
true lossless compression.   

There were minor differences in the compressibility of the 
different voltage phases and between the different PMU units.  
The main difference occurred in the compression of the 
voltage magnitude data and was typically was within 5% of 
the aggregate values.  These variations are likely due to 
variations on the loading patterns on certain phases and the 
noise level on the different units.  There also appeared to be a 
weak temporal correlation in the compressibility of the voltage 
signals.  It is unclear what the implications of this observation 
are.     

A PMU measuring at 60 Hz would produce 257 MB of 
frequency, voltage and current data in a day. If we were to 
assume that current data would compress at an equivalent rate 
as the voltage data.   Using compression this data could be 
reduced to about 98 MB.  The timestamp data and status data 
are highly compressible since very little information is 
contained in these fields. They are often constant for a long 

period of time or are spaced in very regular intervals.  If the 
timestamps are truly regularly spaced, they can be encoded 
using only a few bytes by simply recording a starting time, an 
interval and a count.  Otherwise, they can be compressed with 
high ratios.  A few tests indicate compression ratios of greater 
than 20 on time data sets with missing packets or irregularly 
spaced measurements. Given the relatively infrequent changes 
in any status field it is expected this would also be highly 
compressible.  Given this, we expect that, accounting for file 
format overhead, PMU device measurements including 3-
phase voltage, 3-phase current, and frequency operating at 60 
Hz can be compressed using available lossless compression 
technologies to about 105MB per day.    

VII. CONCLUSION 

In this paper, we discuss the compressibility of a number 
of fields of data from a synchrophasor using real data 
collected on a distribution network over a period of several 
months.  The results indicate that storing voltage data as 
magnitude and phase makes it significantly easier to compress 
and that frequency data is generally more compressible than 
the voltage data.  The best compressor in terms of 
compression ratio for lossless storage of PMU data is the szip 
program using the –i flag.   
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